post

What’s new in GNU make 4.0?

After a little bit more than three years, the 4.0 release of GNU make finally arrived in October. This release packs in a bunch of improvements across many functional areas including debuggability and extensibility. Here’s my take on the most interesting new features.

Output synchronization

For the majority of users the most exciting new feature is output synchronization. When enabled, output synchronization ensures that the output of each job is kept distinct, even when the build is run in parallel. This is a tremendous boon to anybody that’s had the misfortune of having to diagnose a failure in a parallel build. This simple Makefile will help demonstrate the feature:

1
2
3
4
5
6
7
8
9
10
11
12
all: a b c
a:
@echo COMPILE a
@sleep 1 && echo a, part 1
@sleep 1 && echo a, part 2
@sleep 2 && echo a, part 3
b c:
@echo COMPILE $@
@sleep 1 && echo $@, part 1
@sleep 1 && echo $@, part 2
@sleep 1 && echo $@, part 3

Now compare the output when run serially, when run in parallel, and when run in parallel with –output-sync=target:

Serial Parallel Parallel with –output-sync=target
$ gmake
COMPILE a
a, part 1
a, part 2
a, part 3
COMPILE b
b, part 1
b, part 2
b, part 3
COMPILE c
c, part 1
c, part 2
c, part 3
$ gmake -j 4
COMPILE a
COMPILE b
COMPILE c
b, part 1
a, part 1
c, part 1
b, part 2
a, part 2
c, part 2
b, part 3
c, part 3
a, part 3
$ gmake -j 4 --output-sync=target
COMPILE c
c, part 1
c, part 2
c, part 3
COMPILE b
b, part 1
b, part 2
b, part 3
COMPILE a
a, part 1
a, part 2
a, part 3

Here you see the classic problem with parallel gmake build output logs: the output from each target is mixed up with the output from other targets. With output synchronization, the output from each target is kept separate, not intermingled. Slick! The output doesn’t match that of the serial build, unfortunately, but this is still a huge step forward in usability.

The provenance of this feature is especially interesting, because the idea can be traced directly back to me — in 2009, I wrote an article for CM Crossroads called Descrambling Parallel Build Logs. That article inspired David Boyce to submit a patch to GNU make in 2011 which was the first iteration of the –output-sync feature.

GNU Guile integration

The next major addition in GNU make 4.0 is GNU Guile integration, which makes it possible to invoke Guile code directly from within a makefile, via a new $(guile) built-in function. Naturally, since Guile is a general-purpose, high-level programming language, this allows for far more sophisticated computation from directly within your makefiles. Here’s an example that uses Guile to compute Fibonacci numbers — contrast with my Fibonacci in pure GNU make:

1
2
3
4
5
6
7
8
9
10
11
define FIBDEF
(define (fibonacci x)
(if (< x 2)
x
(+ (fibonacci (- x 1)) (fibonacci (- x 2)))))
#f
endef
$(guile $(FIBDEF))
%:
@echo $(guile (fibonacci $@))

Obviously, having a more expressive programming language available in makefiles will make it possible to do a great deal more with your make-based builds than ever before. Unfortunately I think the GNU make maintainers made a couple mistakes with this feature which will limit its use in practice. First, Guile was a poor choice. Although it’s a perfectly capable programming language, it’s not well-known or in wide use compared to other languages that they might have chosen — although you can find Scheme on the TIOBE Index, Guile itself doesn’t show up, and even though it is the official extension language of the GNU project, fewer than 25 of the GNU project’s 350 packages use Guile. If the intent was to embed a language that would be usable by a large number of developers, Python seems like the no-brainer option. Barring that for any reason, Lua seems to be the de facto standard for embedded programming languages thanks to its small footprint and short learning curve. Guile is just some weird also-ran.

Second, the make/Guile integration seem a bit rough. The difficulty arises from the fact that Guile has a rich type system, while make does not — everything in make is a string. Consequently, to return values from Guile code to make they must be converted to a string representation. For many data types — numbers, symbols and of course strings themselves — the conversion is obvious, and reversible. But for some data types, this integration does a lossy conversion which makes it impossible to recover the original value. Specifically, the Guile value for false, #f, is converted to an empty string, rendering it indistinguishable from an actual empty string return value. In addition, nested lists are flattened, so that (a b (c d) e) becomes a b c d e. Of course, depending on how you intend to use the data, each of these may be the right conversion. But that choice should be left to the user, so that we can retain the additional information if desired.

Loadable objects

The last big new feature in GNU make 4.0 is the ability to dynamically load binary objects into GNU make at runtime. In a nutshell, that load of jargon means that it’s possible for you to add your own “built-in” functions to GNU make, without having to modify and recompile GNU make itself. For example, you might implement an $(md5sum) function to compute a checksum, rather than using $(shell md5sum). Since these functions are written in C/C++ they should have excellent performance, and of course they can access the full spectrum of system facilities — file I/O, sockets, pipes, even other third-party libraries. Here’s a simple extension that creates a $(fibonacci) built-in function:

#include <stdio.h>
#include <gnumake.h>

int plugin_is_GPL_compatible;

int fibonacci(int n)
{
    if (n < 2) {
        return n;
    }
    return fibonacci(n - 1) + fibonacci(n - 2);
}

char *gm_fibonacci(const char *nm, unsigned int argc, char **argv)
{
    char *buf  = gmk_alloc(33);
    snprintf(buf, 32, "%d", fibonacci(atoi(argv[0])));
    return buf;
}

int fibonacci_gmk_setup ()
{
    gmk_add_function ("fibonacci", gm_fibonacci, 1, 1, 0);
    return 1;
}

And here’s how you would use it in a makefile:

1
2
3
load ./fibonacci.so
%:
@echo $(fibonacci $@)

I’m really excited about this feature. People have been asking for additional built-in functions for years — to handle arithmetic, file I/O, and other tasks — but for whatever reason the maintainers have been slow to respond. In theory, loadable modules will enable people to expand the set of built-in functions without requiring the approval or involvement of the core team. That’s great! I only wish that the maintainers had been more responsive when we invited them to collaborate on the design, so we might have come up with a design that would work with both GNU make and Electric Make, so that extension authors need only write one version of their code. Ah well — que sera, sera.

Other features

In addition to the major feature described above there are several other enhancements worth mentioning here:

  • ::= assignment, equivalent to := assignment, added for POSIX compatibility.
  • != assignment, which is basically a substitute for $(shell), added for BSD compatibility.
  • –trace command-line option, which causes GNU make to print commnds before execution, even if they would normally be suppressed by the @ prefix.
  • $(file …) built-in function, for writing text to a file.
  • GNU make development migrated from CVS to git.

You can find the full list of updates in the NEWS file in the GNU make source tree.

Looking ahead

It’s great to see continued innovation in GNU make. Remember, this is a tool that’s now 25 years old. How much of the software you wrote 25 years ago is still in use and still in active development? I’d like to offer a heartfelt congratulations to Paul Smith and the rest of the GNU make team for their accomplishments. I look forward to seeing what comes next!

Trackbacks

  1. […] are several bug-fixes, and similar minor updates. There is a nice writeup of the features in this whats new in GNU Make 4.0 blog […]

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Follow

Get every new post delivered to your Inbox.

%d bloggers like this: